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INTR CTION

The Naval Ordnance Laboratory (NOL) has been engagd in a
cooperative bomb research program with the Royal Aircraft
Establishment (RAE) and the Australian Weapons Research *stablislmt
(VIE). This effort was undertaken primarily to ascertain the
suitability of six-degree-of-freedom digital computer trajectory
programs for predicting the motion of free-fall weapons. A study
of this type became feasible with the establishment of Ube
instrumented bomb research program of the Weapons Research
Establishment. As a result of joint meetings aong representatives
of NOL, WRE and RAE a mutual effort was agreed upon. Within the
frame work of this agreement, it was NOL's responsibility to make
the required wind-tunnel measurements and to perform some of the
trajectory computations.

In addition to comparing the digital computer trajectory
calculations with data obtained from the instrumented free-fall
stores, it was also decided to extend this cooperative effort to
a study of less conventional stabilizers. These stabilizers would

include freely spinning cruciform tails, freely spinning monoplane
tails and split-skirt tails.

This report presents the results of Magnus wind-tunnel
measurements of fixed and freely spinning cruciform stabilizers,
freely spinning monoplane stabilizers and split-skirt stabilizers.
Other reports present static measurements and damping-in-pitch
measurements on all configurations.

SYMBOLS

cp center of pressure

C pitch-moment coefficient, N Y/QSd

C yaw-moment coefficient, M/QSd

C n Magnus-moment derivative, C n/b (pd/2V)

second-Magnus moment derivative, 2 C /i (pd/2V )a

C Y yaw-force coefficient, F /QS

C yp Magnus-force derivative, aC v/B(pd/2V)
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CiW Ownead hagwax-force derivative, bCy; (pd/2V.) a

4 ref resee lengthy iMxim body diameter

Pc oment Of ardaicforce along y axis

Irl Ngmu force vector

lip is, amit vectors along the x, y, z axes

3 ach nmber

~gm-meatvector

pitching mment, nment about z axis

p Spin rate, of body about body z axis;

3; redeced spin. rate, pd/2V*

Me, stagnation pressure

Q dynmic presme, IL/oV.2

r distance from center of gravity to center of preasure

a gas constant for air

so Reynolds number (base" upon body length)

3 refrec area, vd2 /4

T teiqierature

V free-stream velocity

K body agis from center of gravity to body vertex
along longitudinal axis of symmetry

y body axis orthogonal to x axis and normal to
angle-of-attack plane

e angle of sttack, angle between x axis and V. vector

0 density of frot sireaa

8 angle of gin cant

2
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DESCRIPTION OF 1I0PIGURATXONS

Table 1 li3ts the various configurations which were considered
for both wind-tunnel and full-scale free-fall testing. All
configurations used the same basic forebody with the exception
of the addition, in some cases, of a yav probe. The main distinction
among the various configurations in in the stabilizer. Each shape
in Table 1 is designated by a letter. In the case of the cruciform
and monoplane stabilizers, the liteial designation is followed by
a symbol to indicate the angle of fin cant. Thus, B84 refers to
a freely spinning cruciform tail with a four-degree fin cant.
Whether the monoplane or cruciform stabilizer is used, all fins
have identical cant angles.

In this report Magnus wind-tunnel measurements are given for
configurations A, B, C and G. Because the making of Magnus
measurements is a rather lengthy procedure it became necessary to
reduce the number of originally proposed configurations to fit

owithin a tracteble test rogram. T helio f originally
proposed shapes were reexamired in the light of tactical advantages
and possible operational difficulties. Of course, there were also
experimental problems - both in wind-tunnel and free-fall tests -
that also influenced the final evaluation.

Any test program would have to include the fixed cruciform
stabilizer (designated as A) since this configuration is an
operational free-fall store. Further, these Magnus data would be
added to a large store of static and dynamic (pitch damping and
roll damping) data already in existence. The freely-spinning
cruciform stab.1izers (configurations B) were retained because
this stabilizer had previously shown great promise - both in
computer simulations and in the free-fall portions of the program -
in avoiding yaw-roll resonance problems. In evaluating the fixed
split-skirt stabilizers (configurations C and E) it was felt that

r Magnus measurements, made at a single skirt opening would be
sufficient. This stabilizer has the tactical advantage of providing
a variable drag capability (by changing the skirt opening) in a
single low-drag carriage. However, it vas felt that the additional
mechanical complexity needed to deploy and lock the skirts would

~reduce the attractiveness of the split-skirt from an operational

point of view. (It also proved impossible to prevent stabilizer
fracture under the high spin rates required in a Magnur test.)
Thus, the tests wtre limited to a skirt opening of 10 degrees
(configuration C). The freely spinning split-skirt stabilizers
(configurations D and F) were examined briefly at the onset of
the program and were eliminated because of mechanical complexity.
No wind-tunnzl models or free.fall stores were constructed.

3
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! The frealy spinning monoplane stabilizer (configmra~tion G)
was tested both in the wind tunnel and in full-cale free fall.
This stabilizer is formed from the freely spinning cruciform by
removing two opposing paels. This stabillze7 has all th. advantages
of the freely spinning cruciform. The removal of two panels makes
this configuration attractive from the -tut of view of stowage.

Wind-tunnel models of the crucifors and split-skirt stabilizers A
are showt in Figure 1. The lower figure presents configuratior. A,
or the fixed cruciform stabilizer. The removal of a small set
screw in the model permits the tail to freely spit relative to
the forbody. The result is the freely spinning crucifors stabilizer
or configuration B. Configuration B is converted into configuration
G, the freely spinning monoplane, by removing two opposing
stabilizer panels and replacing these with blanks.

The upper figure depicts configuration C or, the split-akirt
stabilizer at a lO-degree opening. The split-skirt stabilizer say
be formed from the fixed cruciform configuration by removing 1.75
calibers of the aft section of the body and replacing this with a
cylindrical section of the same length. This cylinder is then
split axially into four equal petals. These petals are rotated
about a forward hinge line to make the desired angle with the
body's axis of symmetry. As has been mentioned, only the petal
configuration making a l0-degree angle with the bodyts center lnc
was tested.

Figures 2 and 3 present some of tt2 dimensional details of the
full-scale cruciform and split-skirt stores, respectively. The
wind-tunnel models were 3.5 inches in diameter (about 0.18 of full
scale).

EXPUIMENTX, UETD

All Magnus wind-tunnel measurements wre carried out In the
Naval Ship Research and Development Center's 7 x 10-Foot Transonic
Wind Tunnel. This facility is a continuous flow wind tunnel
capable of operating up to 1.5 atmospheres, or up to a Mach number
of 1.17. Some of the more significant flow capabilities of this
facility are presented in Figure 4.

It .-J be noted in Figure 4 that there are three operational
modes for this transonic tunnel. The table given below shows the
Mach number capability in each of 1hese modes:

4
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Total Pressure
Mode Upper Mach Number (atI pheres)

Test Section Vented 0.70 1.0 to 1.5

Settling Chamber Vented 1.00 1.0

Settling Chamber Evacuated 1.17 0.5 to 1.0

The Magnus effect, at least on the forebody, bas its origin
in the boundary layer (see Ref. (1)). Therefore, it m felt to
be essential to test over a range of Reynolds nwmbers. This
requirement, coupled with a Mach number range of 0.60 to 0.95,
led to the decision to use the vented and evacuated modes of wind-
tunnel operation.

Also contained in Figure 4 is the altitude equivalent of the
test conditions. If the atmosphere is assumed to be isothermal
and composed as an ideal gas, it is a straightforward mater to
show tkat the equivalent altitude, h, may be expressed as a function
of density, a, by

h - eRo  nM (I)

where T is temperature, R the gas constant for an ideal gas and
the subscript naught refers to reference, or stagnation, conditions.

If the density ratio-- Mach number relationship for a diatonic
gas is used, Equation (1) becomes,

5RTo M2
h W- In n(I + 3 ). (2)

The total temperature condition for the NSRDC facility under
evacuated .nd vented conditions is 535-degrees Rankine.

The most important single instrument used in making successful
Magnus measurements is the wind-tunnel balance. In evaluating
the design of a Magnuu balance it is necessary to consider the
nature of the Magnus effect. The Magnus force acts normal to the
angle-of-attack plane; or that plane defined by the free-stream
velocity vector and the body's longitudinal axis. The Magnus force,
therefore, must be measured in the presence of an orthogonal force
(normal force) which is at least ten tines greater in magnitude. In
addition, these measurements must be made on a body which is spinning.

5
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At the heart of the Magnus balarce is the Magnus bridge. These
bridges are a special gage section designed to measure the low-
level Magnus loads, and to make these measurements with low inter-
action from the orthogonal normal force. The details of the Magnus
bridge are shown in Figure 5, which shows a yaw-plane view of the
forward-gage section of the Magnus balance. It will be noted that
the gages for measuring yaw are mounted on the eccentric columns.
These columns are attached to the balance proper by means of pin £
joints.

Assume that the balance is subject to a yaw (or in this case
Magnus) moment such that the upper fibers are in compression. Due
to the eccentric loading on the flexure, secondary bending in
addition to that imposed on the balance proper will mechanically
amplify the elastic distortion due to the Magnus moment. That is,
if the bending experienced by a point on the flexure is compared
with that at a point on the balance proper, equidistant from the
elastic axis, the point on the flexure will be at about a five
times greater stress. Because the flexure is attached to the
balance by means of a pin joint, there is low yaw-pitch interaction.

In order to make Magnus measurements it is necessary to mount
the model on the balance in such a way that the model is free to
spin about its longitudinal axis. Toraue can cone from a

aneumatic or electric motor mounted inside the model; or, obtained
ay canting the model's tail fins.

For the Magnus measurements on the fixed crucifor and split-
skirt stabilized configurations, the model was supported at two
points by ball bearings. A variable frequency electric motor spun
the model aIout its longitudinal axis. (Figure 6 is an illustration
of this support and drive system.) Because of the large contribu-
tion from the fins to aerodynamic damping, it was necessary to
provide a 3-to-1 speed-reduction gear box. In the case of the
oplit-skirt configuration it was possible Co omit the gear box
because of the such lower torque requirements. For the freely
spinning stabilizer tests, torque was generated by differential
fin cant. Because of the versatile model design it was necessary
only to release a set-screw in the rear of the model to uncouple
the stabilizer from the forebody. The forebody was locked to the
balance by replacing the gear box with a dummy unit which keyed
the forebody to the balance.

Figures 7 and 8 illustrate the cruciform and split-skirt
stabilizer configurations mounted in the NSRDC transonic facility.
Figure 9 presents the sting model base geometry for both the crucifom
and split-skirE stabilizers. The dimensions given here are for
the wind-tunnel models used at NSRDC.

6
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The technique used for making Magnus measurements will be
briefly outlined next. After the tunnel flow had been established
the model was brought to angle of attack. In the case of the fixed
crucifori. (configuration A) and split-skirt (configuration D) the
electric motor provided the desired spin rate. While the spin
rate was held constant (to within 2 percent) the gage readings
were sampled 150 times. These readings were then averaged to give
a single load measurement. A data point for a given configuration
is defined by the triplet of numbers: angle of attack, spin rate
and Mach number. This averaged load In then a single data point.
The model spin rate is changed successively throughout its range.
Once the range of spin rates have been spanned, the angle of attack
is changed and the entire procedure is repeated.

A similar approach is used for the freely spinning cruciform
(configuration B) and freely spinning monoplane (configuration G)

*stabilizers. A modification in the order of spin rate, angle of
attack anc' Mach number variation is necessary because the fin cant
is used for torque generation. This requires that a singl'e measure-
ment be made at each angle of attack and Mach zumber. It is necessary
to make measurements over the entire Mach number-A-1o.e-of-atiack
range with a freely spinning stabilizer of fixed fin cant. Spin
rate will vary somewhat with changes in a'.h number and angle of
attack due to changes in fin effectiveness &. .' roll damping. The
model is then fitted with a fin of geometrically identical plan-
form but a different angle of fin cant. Again measurements are
made at all values in the angle-of-attack-Mach number range. In
these tests fins having cant angles of 2 and 4 degrees were used.

DATA REDUCTION

The Magnus force, fg, will be defined as a force depending
upon body spin rate and sngle of attack, and acting normal to the
plane establised by the spin vector, p, and the free-stream velocity
vector, V.. Mathematically this force, JM, and its corresponding
moment, 1M, caa be expressed as

£ ft

-( - (3)

and

1M - k x , (4)

7
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where k is a scalar constant for a given set of flow conditions;

! is the vector distance from the center of gravity to the Magnus
center of pressure, along the body's axis of symmetry; and, p is
the spin-rate vector defined along the axis of symmetry.

All forces and moments are referred to the conventional aero-
ballistic body axis system; that is, an axis system which is fixed
to the body and shows all its rotational and translational motion
except spin. In this axis system the x axis is forward along the
axis of symmetry; the y axis is to the right when the store is
viewed along the positive x axis; the z axis completes a right-
banded triad. The origii of this axis system is at the moment
reference center taken, in this case, to be the body mid-poInt..
Unit vectors along the x, y, z axes will be defined as Ix, LY, 1z.
The wind-tunnel constra-"nts are such that the x, z plane is vertical;
and, that this plane contains the flow velocity vector.

Since p- p 1 x, - (V.cosa)TX + (V.sina)lz, Xquation (3) may
be rewritten as

I- k-p. (5)
ktP~iIITLY - FyIly

where the side force, Fy, is equal to -kpVysinft. This relationship
demonstrates that the Magnus force is an odd function of the angle
of attack and spin rate. The Magnus moment equation also may be
rewritten using the components of the spin-rate and free-stream
velocity vectors. That is,

- - k(prsio) lz - NzLZ (6)

where the yawing soment, Nz, is equal to -kpr sinty. It can be seen
from Equatio.n (6) that the Magnus moment is an odd function in
center of pressure location, spin-rate and angle-of-attack. For
example if the Magnus center of pressure is ahead of the
center of gravity, the Magnus moment would be negative (nose to the
left).

The yaw-force and yaw-moment coefficients are defined as;

F
Q cS and "Cn (7)

The above coefficients depend upon the body pressure distribution,
which in turn depends upon the compressibility, viscosity and
unsteadiness of the flow field. To indicate the degree of simulation

8
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of these effects it is necessary to present coefficients as functions
of the appropriate similarity parameters.

Since the free-stream velocity is in the vicinity of the
speed of sounDd, it is necessar, to regard the medium as compressible.
Simulation if compressibility effects is assured by testing at
identical free-flight Mach numbers. Also, since the Magnus effect
on the forebody originates eritiely in the boundary layer, it is
necessary to test at the anticipatd Reynolds numbers to simulate
viscous effects. Finally, si$ice eacb surface element on a steadily
spinning body experiences a cyclically changing flow field, the
test must be made at a paramete" which matches flow unsteadiness.
In Magnus tests this flow u..teadiness parameter is de'ignated
as the reduced frequency, J. Testing at identical reduced frequencies
assures a matehing of Vt e flow angularity at similarily located
surface eleme:,ts on geometrically similar bodies. Thus, it will
be postulate; .n a Magnus test that the coefficients must be
expressed as functions of Mach number, Reynolds number and reduced
frequency, as well as body angular attitude.

If the Magnus force is assumed to b an analytic function of
angle of attack and reduced frequency, the yaw-force coefficient
can be expanded in a truncated Taylor series in ty and If, as;

where all derivatives are evaluated at m and ' equal to zero.
Since,

Cy(O, 0) - Cy(O, P) - Y(m, 0) - 0 (9)

it follows that all but the cross derivatives vanish. Thus,
Eiuation (8) becomes, as a first approxization,

-C . (10)

A similar relationship for the moment coefficient, Cn, would be

Cn 2C n p
n - p. (11)

9
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The terms on the right in Equations (10) and (11) are the
familiar Magnus force and moment derivatives, respectively, for
linear aerodynamics. It should be noted that Equations (10) a
(11) are compatible with Equations (5) and (6) for small angles
of attack.

Before coning to grips with an analytic description of the
problem's nonlinearties it is important to recall the methods ofA
data acquisition. Side-force and yawing-moment measurecents were
made while the body was spinning at a constant rate and at a
fixed angle of attack and Mach number. A.ter measurements were
made at six discrete spin rates, the angle of attack was chang..d
and the process repeated.

Such a procedure suggests rewriting Equation (7) as,

C5!'Y~) + 1 ()V i2 #)V (12)

where the derivatives are evaluated at 15 - 0. Equation (12) may
be thought of -as an expression for Cy as a polynomial in 11 with the
derivatives - or coefficients - as functions of angle of attack.

At the onset of the test program it was hoped that the Magnus
effect would be linear with the reduced frequency and, therefore,
Equation (12) could be rewritten as

;C GO~C y(0, IF) y ifP (13)

In the case of the tests of the split-skirt stabilizer (configuration
C) the Magnus force and moments were found to be linear with the
reduced spin rate. However, for all other configurations - fixed
and freely-spinning crucifcorm stabilizers - the Magnus effect was
nonlinear in the reduced frequency as well as the angle of attack.
Thus, in the case of the cruciform configurations it was necessary
to prizent the yaw-force and yawing-moment coefficients as functions
of the reduced frequency.

DISCUSSION OF RESULTS

Figures 10 to 110 contain the entire collection of Magnus
data obtained on the M823 Research Store. These data include
measurements made on the basic fixed cruciform configuration as

10
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well as configurations with the freely spinning cruciform, freely

spinning monoplane and the split-skirt stabilizers.

It was mentioned in the previous section that it was not

possible to linearize the Magnus moment, in spin rate, except in
the case of the split-skirt stabilizer. Thus, it is necessary to
express the yaw force and moment as functions of the reduced
spin rate.

Figures 10 through 20 present the yaw force as a function of
reduced apin ratp *or Mach numbers of 0.70, 0.85 and 0.95 and over
an angle of attat.- inge of from 0 to 20 degrees. Figures 21 through
30 give the yaw-momeat coefficient versus reduced frequency over
the same range of values. If the reduced spin rate remains below
0.04, it would be possible to linearize the yaw-force and moment
measurements. Above a reduced spin rate of 0.06, especially at the
higher angles of attack, the nonlinearities in the Wagnus force and
moment become evident. If the reduced spin rate is thought of
as being approximately the angle of attack due to roll rate
experienced by a fin panel, a reduced spin rate of 0.06 would
correspond to about 3.6 degrees of angle of attack. In examining
the static measurements made earlier in the program (see Ref. (2)),
it is obvious that the normal force is linear with angle of attack
below 20 degrees. Thus, nonlinearities of the Magnus effect with
reduced spin rate must be explained through other than static
aerodynamics.

Evaluating the trends of Magnus measurements is difficult
because of the lack of quantitative understanding of the phenomenon.
Two theories for finned bodies have been advanced which deserve at
least passing mention here. One is the qualitative theory of Platou
(Ref. (3)) and the other is a quantitative theory due to Benton
(Ref. (4)). Both of these theories assume that the Magnus effect
originates entirely in the stabilizer. In other words, the
distortion of the boundary layer on the forebody due to spin rate
of the forebody (considered by Martin in Ref. (1)) is ignored.

Platou points to the body-induced flow interference on the
leeward fin as the source for the Magnus effect. According to
this theory the pressure distribution on the leeward and windward
fins acts at right angles to the angle-cf-attack plane. Thus,
a decrease in the pressure distribution on the leeward fin (due
to forebody interference) means that there is a net force on the
body which acts normal to the angle-of-attack plane. For a
clockwise spin (viewed from the rear) the net force should be to
the right (or, in a positive direction).
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Benton's theory recognizes that the normal-force vectors on the

fins, which are instantaneously perpendicular to the angle-of-attack

plane, are not parallel (Ref. (4)). The result is a couple acting

to move the body vertex out of the angle-of-attack plane. The sign

of the couple is negative; that is, for a positive spin rate, the

couple tends to move the vertex to the left. Benton shows that

this couple is proportional to the angle of fin cant. The so-

called Benton Magnus moment is identical to the yawing moment, due

to differential aileron deflection which is familiar to aircraft

engineers. Since most of the fixed cruciform Magnus mcssuzrments

present here are for the A80 configuration (zero fin cant), the

application of Benton's theory is not appropriate.

Some of these Magnus measurements may be examined in light

of the flow interference hypothesis of Platou. At low npin rates,

and at low angles of attack, the yaw moment is negative (see

for example Fig. 21 for a - 4.05 degrees). Under the same conditions

the side force is also negative. This means that the Magnus center

of pressure is forward of the body midpoint (moment reference

center). As the reduced spin is increased above 0.06, the Magnus

center of pressure moves rearward, causing the moment to become

positive. According to the flow interference theory of Platou, the

Magnus force is positive to the right. The force on the forebody

should be to the left if consistency with measurements made on

spin-stabilized weapons (see Ref. (5)) for example) is to be

maintained. At higher angles of attack (Figs. 12 and 23), the

yaw force is large and negative, while the yaw moment is positive,

for small reduced spin rates, becoming negative for the higher

reduced spin rates. It appears difficult to make any real

evaluation of the flow-interference hypothesis at this point.

A positive yawing moment may be due either to a movement of

the forebody center of pressure, rearward, past the moment reference

center; or due to a positive force acting at (and due to) the

stabilizer rotation. It will be found, subsequently, that when a

modification is made to body geometry in the vicinity of the body

vertex, such as by the adding of a yaw probe, the sign of the

Magnus force (and moment) will change.

It seems that the effect of the forebody on the fins is far

more complex than simply causing a velocity defect through a wake.

Adding to the above complexity the yaw force changes sign at a

Mach number of 0.95 (see Fig. 13).

*1 Figures 31 through 58 present yaw-force and moment measurements

over the same angle of attack and reduced spin-rate range. This

set of measurements was made at a total pressure of one atmosphere,

* 12
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and at essentially twice the Reynolds number. In this second get
of Magnus measurements the moment is positive up to a Mach nmber
of 0.85 (see Figs. 51 through 53). The Magnus force is still to
the left (or negative) so it may be concluded that either the NagauS
force (due to the stabilizer) is negative, or that the Magaus force
on the forebody dominates. Later, when the freely spinning crulfoam
measurements are examined it will be seen that the Magnus or yaw

force is positive; this seems to support the flow interference
theory. However, it will also be shown that the presence or absence
of the probe can drastically affect the sign of the yaw force.
Thus, it is not possible to entirely resolve even the qualitative
contribution of the stabilizer.

One aspect of te problem which can be examined is the relative
magnitude of the forebody contribution to the overall Magnus force.
One fair assumption might be to regard the forebody flow as
unaffected by the flow field of the stabilizer. (The converse

would be a worse and, at times, an unacceptable assumption.) The

forebody then might be likened to a spin-stabilized projectile.

Reference (5) is a compendium of Magnus measurements on
research projectile shapes. For a 7-caliber body at a Mach number
of 0.80, an angle of attack of 4 degrees aud a reduced spin rate
of 0.1, the yaw-force coefficient, Cy, is -0.018. This value might
be compared with a value of -0.02 taken from Figure 37. Quite
obviously then a large contribution to the Magnus effect on a
fin-stabilized configuration comes from the forebody. This points
to the inadequacy of explaining the Magnus effect solely in terms
of fin-flow interference (Ref. (3)) or fin cant (Ref. (4)).

Attention has been called to the effect of Mach number on the
yaw forces and moments. To illustrate this effect Figures 59

through 62 have been prepared from the material given earlier. In
these figures the yaw force and moment are presented as direct
functions of the reduced Mach number. All of these data were taken

from six-degree angle-of-attack measurements. The data in Figures
59 and 60 were measured in a flow of one-half-atmosphere stagnation

£ pressure. In Figures 61 4nd 62 the flow-stagnation pressare %as
one atmosphere.

If one accepts the postulate that the Magnus force on the

forebody is negative, or to the left (Refs. (1) and (4)), and on

the stabilizer positive, or to the right (Ref. (3)), then some
interesting conclusions may be drawn from Figures 59 and 60. At
the Mach number of 0.70 the net yaw lorce is negative but the

yaw moment is positive. According to the above postulate the
forebody Magnus force ominates. Further, this force acts aft of

13
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"W ai-voimt smamt referene center if it is to give a positive
mama As the Mach uerIncreases the Magnus center of pressure

nam art.- This postulate Is entirely consistent with measurements
*eA o fimlem bodies (Bet. (5)). Zt a Mach number of 0.85 the

Vaou force an the stabilizer bad Increased. This Increase
aC Wassfmrre on the stabilizer, with increasing Mach number, 4"s

Latest with -P- -rts made on the freely spinning stabilizer.
Tbw -moeenswill be discusse4 subsequently. Since the fore-

"e4 mad i'talbilizer fnrces. are nearly equal, but opposite in sign,
the risat Is a mepative comple shich is beiag applied to the body.
U* the foreheiy force is slightly greater, the net force is negative
bat iorderably rewhicd In mum'ituft over the sawe meas remePnts
sof at Vach 0.70. As the Mach umber increases to 0.*95 the hagnus

center of prefor the forebody moves further aft until it
wnarl7 coincides with, the center of pressure of the stabilizer
Mami force. The Vagaus force on the stabilizer has increased
lurtlew so that It doinmates. The result is a positive net force
metibg on the body; and, since this force acts if t of thbe moment

oef c. P cater, the met moment is negative.

In Figures 61 and 62 essentially the same phenomenon is
oseved. Figure 61 shows that the yaw force is always negative
eisa. though It decreases in magmitude as the Mach number iThcreases.

* The Magu fore on the forebo.y is recognized as being essentially
visic in origim (Ref. (1)) and, therefore, s~iould increase i'ith

i~wasig Reynolds number. On the other hand, the yaw force on
the stalbilize my be described, at least in part, by potential
flow metod (Ref. (4)). Thus, the stabilizer would not be
epected to he strongly influenced by viscous effects. Speculations,
suh as those above, are not conclusive; and their resolution must
await more definitive experiments.

Ow -3f the most unexpected aerodynamic inputs into this
cooperative free-fall research program has centered about the addition

* of a yaw probe at the body vertex. Originally its presence vas
expected to have aegligible effect on the aerodynamice loads.
Attention was focused on its presence when free-fall telemetry records
of body mozion dilfered markedly from the computer predictions.

Smbuqaenly, wind-tunnel measurements were made of the yaw force
ad momnt in the presence and absence of the yaw probe. Figures

63 and 64 indicate the influence of the probe on the A850 configura-
tion at a Mach number of 0.85. Clearly, the addition of the probe

* changes the yaw force from negative to positive and the moment from
positive to negative'. No adequate theory from fluid mechanics
presetly exists to explain this change in sign. A bibliograpby,
somirizing work cdone in the area of vortex shedding, is given
by Reference (6).

14



I
NOLTR 69-214

Figures 65 through 88 present the yaw force and moments as a
function of angle of attack. These figures also present Magnus
data on the A2 and A84 configurations.

Figures 89 through 94 present the yaw force and moment on the
freely spinning cruciform configurations at Mach numbers of 0.70,
0.85 and 0.95. It will be noted, immediately, that the yaw force
is positive - the sign which was predicted by the interference
theory. In making these tests the forebody was fixed to the balance
and only the stabilizer was allowed to spin :reely. There is
clearly a decrease in the steady-state spin rate with increasing
angle of attack. Also, at small angles of attack the yaw force and
moment are weak functions of reduced frequency; but the dependency
of load on spin rate increases with angle of attack. Unforturately,
measurements were made at only two fin-cant angles (2 and 4 degrees)
so that it is difficult to draw any detailed conclusions regarding
the Magnus loads. These freely spinning cruciform measurements had
been used earlier, to support speculations based upon the qualitative
flow-interference theory. Yet it was shown that, at least in the
case of the fixed cruciform stabilized configurations, the presence
of the yaw probe drastically changed the Magnus effect. Of course,
when Figures 63 and 64 were made the forebody was also spinning.
Unfortunately no measurements have been male for the freely spinning
cruciform and monoplane configurations without a yaw-meter probe.

Figures; 95 through 100 present yaw-force and moment measurements,
for the freely spinning monoplane stabilizer, at Mach numbers of
0.70, 0.85 and 0.95. These conditions are identical to those used
for testing the freely spinning cruciform (Figs. 89 through 94).
It might be of some advantage to compare the freely spinning monoplane
and cruciform configurations in order to determine what effect the
removal of two opposing stabilizer panels has on the Magnus character-
istics. This can be done by comparing the two configurations at
(say) a Mach number of 0.70. It will be noted that the Magnus force
on the monoplane stabilizer is somewhat larger than half of that
for the cruciform stabilizer.

Figures 89 through 100 present yaw-force and moment measurements
made on the freely spinning stabilizer. These figures should be
accepted only as indicators of trends and relative orders of
magnitude. Unfortunately there is only a sparse coverage of the
spin range (only two fin-cant angles) and irregular angle-of-attack
dependency. For this reason it is felt that further examination
of the Magnus characteristics for a freely spinning stabilizer
should be carried out before such measurements can be accepted,
quantitatively.

15
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Figures 101 through 110 give the Magnus characteristics of
the 10-degree split-skirt stabilized configuration at Mach numbers
of 0.70, 0.80, 0.85, 0.90 and 0.95. For configurations given
earlier in this report the Magnus maurments were presented
in terms of the yaw-force and moment coefficients. In the case of
the split-skirt stabilizer, the yaw coefficients exhibited sufficient
linearity with spin rate so that it was possible to use only the
slopes as representative of t'.e Magnus effect. These slopes are
called the Magnus force and moment derivatives. *

Linearity of the yaw force and moment with spin rate is not
too surprising, since at high rotational speeds the configuration
appears to be a body of revolution. It is interesting to note that
the Magnus force and moment derivatives, when plotted versus angle
of attack, have a rather sudden change in slope at an angle equal
to near the petal half angle - 10 degrees in this case. If the
angle of attack of the weapon was below 10 degrees it would be
possible to employ Equation (11) and obtain the second Magnus force
and moment derivatives.

CONC=SIONS

This report has shown that it is possible to make meaningful
Magnus measurements on finned configurations at subsonic and
transonic airspeeds.

In the operation of this test program certain difficulties
were encowtered which were not anticipated at the onset of the
testing. First, the Magnus effect on finned bodies was found to
be nonlinear with reduced spin rate. Initially, it was felt that,
!-ased upon linear aerodynamics, the yaw force and moment should be
quite linear within the range of reduced spin rates used here.
The effect of fin-cant angle was not expected to be as severe as
measurements have indicated. Future work should include a comparison
between measurements made using the internal drive motor as a
power source and with fin cant. The freely spinning body configura-
tions have certain curious behavior characteristics which can be
resolved only through me tests using a larger number of fin-cant
angles. Further testing should also be done to investigate the
effect of forebody protuberances on the Magnus effect. In doing
this future work, certainly low-speed flow visualization studies
should be made. Finally, an adequate assessment should be made of
the theoretical approaches to the Magnus effect problem. Since the
flow-interference hypothesis seems promising it is recommended that
a fruitful set of experiments might consist of a set of measurements
to determine the pressure distribution on a body fitted with a
spinning-cruciform stabilizer.

16
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TIAB I

(O01IGUIUTIOUS AND STABILIZKIS

A. Fized Cruciform Tal, 8 - O, , 4 Degrees

B. Free-Spinning Cruciform Tail, 6 - 2, 4 Degrees

C. Fixed Spilt-Skirt Tall, Skirt Angle 10 Degrees

D. Free-Spinning Split-Skirt Tail, Skirt Angle 10 Degrees

Z. Fixed Split-Skirt Tail, Skirt Angle 15 Degrees

F. Free-Spinning Split-Skirt Tail, Skirt Angle 15 Degrees

I G. Free-Spinning Monoplane Tail, C - 2, 4 Degrees

1

It
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SPLIT SKIRT STABILIZER

CRUCIFORM SIABILIZER

FIG. 1CONFIGURATIONS OF THE M823 FREE-FALL RESEARCH STORE
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